0=-5(t^2-6t+4)

Simple and best practice solution for 0=-5(t^2-6t+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-5(t^2-6t+4) equation:



0=-5(t^2-6t+4)
We move all terms to the left:
0-(-5(t^2-6t+4))=0
We add all the numbers together, and all the variables
-(-5(t^2-6t+4))=0
We calculate terms in parentheses: -(-5(t^2-6t+4)), so:
-5(t^2-6t+4)
We multiply parentheses
-5t^2+30t-20
Back to the equation:
-(-5t^2+30t-20)
We get rid of parentheses
5t^2-30t+20=0
a = 5; b = -30; c = +20;
Δ = b2-4ac
Δ = -302-4·5·20
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-10\sqrt{5}}{2*5}=\frac{30-10\sqrt{5}}{10} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+10\sqrt{5}}{2*5}=\frac{30+10\sqrt{5}}{10} $

See similar equations:

| 8v+10=35+3v | | 9=2x+1-6x | | v3= 2 | | 5a3+3=-3 | | -2x+7x=9x | | .05x=x-4.285 | | (X+4)(x-6)=3x | | -3-2n-3n=12 | | u-1= -1 | | 5.1(x+8)=91.8 | | -2x+7x=9 | | 3=3v | | 2*p^-1=-3+2*p | | .333x+10=12 | | 6x^2+10x+25=0 | | 5w–3=3w+15 | | 6x(11+2)+3=12 | | 3(x−1)=2x+9 | | 15-4x=-12.6 | | -2=7/6p | | -2.6=a/5 | | 9/4=1/2x+1-3/2x | | 3x3-24x2+48x=0 | | -4c-3=-9c+42 | | 6x(X+2)+3=12 | | 2+x/3=4+x/5 | | 2.6=d+6.9 | | 4x−5=7 | | 2x+5~7x=15 | | .5x+34=90 | | 5/2x=3/12 | | .25x+21=23 |

Equations solver categories